Advanced Search provides additional search options providing the ability to narrow your search by combining multiple search variables.
Note that by default, the Date Range set to 2017 will return all results from a text search. You can select both Date Range settings to narrow the returned results.
Author : C. Lothode
Results 1 - 3 of 3
Fluid Structure Interaction Analysis of a Hydrofoil
In this paper, a dynamic computation of the Groupama 3 foil is performed. Foils are thin profiles, placed under the hull of a ship, allowing it to provide a lifting force. This study is placed in the context of the 2013 America’s Cup, which will see the appearance of a new kind of high performance multihull. At high speeds, the foils are subject to intense hydrodynamic forces and to movement due to the sea. The deformations are then sizable and there is a risk of ventilation, cavitation or vibration that could lead to important modification of the hydrodynamic forces or to the destruction of the foil. It is therefore necessary to quantify correctly its deformation and its response to dynamical efforts. The foil/water interaction is a strongly coupled problem, due to the thickness of the object. In this paper, the problem is solved using a segregated approach. The main problems resulting of such a method are the numerical stability and remeshing. These problems are detailed and some results presented. As a first test case, the simulation of a vortex excited elastic plate proposed by Hüb- ner is presented. This case is very demanding in terms of coupling stability and mesh deformation. Then, the foil of Groupama 3 is modelled in a simplified form without hull and free surface, and then in a more realistic conditions with free surface and waves.
FSI Investigation on Stability of Downwind Sails with an Automatic Dynamic Trimming
Gennakers are lightweight and flexible sails, used for downwind sailing configurations. Qualities sought for this kind of sail are propulsive force and dynamic stability. To simulate accurately the flow around such a sail, several problems need to be solved. Firstly, the structural code has to take into account cloth behavior, orientation and reinforcements. Flexibility is obtained by modeling wrinkles. Secondly, the fluid code needs to reproduce the atmospheric boundary layer as an input boundary condition, and be able to simulate separation. Thirdly, fluid-structure interaction (FSI) is strong due to the lightness and the flexibility of the structure. The added mass is three orders of magnitude greater than the mass of the sail, and large structural displacement occurs, which makes the coupling between the two solvers difficult to achieve. Finally, the problem is unsteady, and dynamic trimming is important to the simulation of spinnakers [4].
The main objective is to use numerical simulations to model spinnakers, in order to predict both propulsive force and sail dynamic stability. Recent developments [2] are used to solve these problems, using a finite element program dedicated to sails and rig simulations coupled with a RANSE solver. The FSI coupling is done through a quasi-monolithic method. An ALE formulation is used, hence the fluid mesh follows the structural deformation while keeping the same topology. The fluid mesh deformation is carried out with a fast, robust and parallelized method based on the propagation of the deformation state of the sail boundary fluid faces [3].
Tests are realized on a complete production chain: a sail designer from Incidences has designed two different shapes of an IMOCA60 spinnaker with the SailPack software. An automatic procedure was developed to transfer data from Sailpack to a structure input file taking into account the orientation of sailcloth and reinforcements. The same automatic procedure is used for both spinnakers, in order to compare dynamic stability and propulsion forces. Then a new method is developed to quantify the stability of a downwind sail.
In this paper, a dynamic computation of the Groupama 3 foil is performed. Foils are thin profiles, placed under the hull of a ship, allowing it to provide a lifting force. This study is placed in the context of the 2013 America’s Cup, which will see the appearance of a new kind of high performance multihull. At high speeds, the foils are subject to intense hydrodynamic forces and to movement due to the sea state. The deformations are then sizable and there is a risk of ventilation, cavitation or vibration which could lead to a large modification of the hydrodynamic forces or to the destruction of the foil. The foil being light compared to the added mass effect, the interaction is a strongly coupled problem. In this paper, the problem is solved using a segregated approach. The main problems resulting of such a method are the numerical stability and remeshing. These problems are detailed and some results presented. As a first test case, the simulation of a vortex excited elastic plate proposed by Hubner is presented. This case is very demanding in terms of coupling stability and mesh deformation. Then, the foil of Groupama 3 is modeled in a simplified form without hull and free surface, and then in a more realistic conditions with free surface and waves.