Advanced Search provides additional search options providing the ability to narrow your search by combining multiple search variables.
Note that by default, the Date Range set to 2017 will return all results from a text search. You can select both Date Range settings to narrow the returned results.
Location : United States Naval Academy
Results 1 - 5 of 6
A Case Study on the Effect of Sweep and Variations in Free-Surface Cross Section Geometry on the Lift and Drag of Transom-Hung Sailboat Rudders
Conventional transom-hung rudders are often used on small sailboats because of their simplicity compared to rudders mounted under the hull; however, they present substantial performance penalties, including (1) the rudder is more likely to ventilate by drawing air down from the free surface, (2) the effective aspect ratio, and therefore the lift-to-drag ratio, is not increased by the mirror-plane of the hull bottom and (3) there is additional spray and wavemaking resistance that arises as a result of the rudder passing through the free surface. This case study focuses on a means to mitigate the last of these penalties, the increased spray and wavemaking resistance. While many transom-hung rudders are essentially parallel, or tapered with the maximum chord at the top where it meets the tiller handle, the reader will recognize that having the largest cross section of rudder at the free surface will generate significant spray and wavemaking resistance, especially when the rudder is turned. This study investigated the use of minimizing the rudder chord length where it passes through the free surface, demonstrating the findings by full-scale towing tests of a series of rudders designed for a Fireball-class dinghy. Running the tests at full-scale, therefore matching Reynolds number and Froude number, eliminated questions on scaling. Experimentation on the effects of sweep angle, section shape and chord length at varying angles of attack and velocities showed a noticeable increase in lift-to-drag ratio of foils with reduced chord length at the free surface and by sweeping the rudder forward. To complete the case study, a velocity prediction program was used to estimate the change in speed around a notional race course.
Full Scale Measurements on a Hydrofoil International Moth
The International Moth class has experienced a resurgence of interest and publicity associated with the adoption of
hydrofoils and the performance improvements these foil have brought. This paper documents a series of full scale tow tests
intended to characterize some of the major parameters impacting the performance of a foiling Moth. Specifically:
• the lift and drag was measured for of various home built and commercially available T-foil configurations,
• the hydrodynamic drag of a hull was measured at various displacements, and
• the aerodynamic forces (side force and drag) were measured for a hull and racks.
It is hoped that this data will be useful for future designers to further push the state of the art.
Dynamic Lift Coefficients for Spade Rudders on Yachts
The loss of a rudder is a dangerous situation for any vessel, and with the increasingly higher aspect ratios in current sailing yacht rudder designs, a better understanding of the forces on a rudder are required. While many failures have been caused by impacts with objects, a large number have failed due to underestimation of sailing loads. While larger aspect ratios increase the lift-to-drag ratio, they also increase the bending moment about the rudder’s root. Combined with thinner airfoil sections to reduce drag, modern rudders are highly stressed. Traditional design methods normally assume that the maximum lift coefficient is constant for all aspect ratios. This project combined computational fluid dynamics (CFD), finite element analysis (FEA) and the tank testing of a 1/5-scale yacht to determine suitable design lift coefficients for spade rudders of cruising and racing yachts. Two rudders of different aspect ratios were tested at various speeds, heel angles and wave conditions in the tank at the Naval Surface Warfare Center – Carderock Division. The rudders were equipped with strain gauges to determine the strains at various positions along the stock and blade. The strain profile was compared against FEA results that used a CFD prediction of the pressure profile. Through back-calculation the lift coefficients in stillwater and waves were derived. The results indicated that these lift coefficients are not constant.
Student Research Projects for the New Navy 44 Sail Training Craft
Offshore-capable sail training craft (STC) specifically designed and built for the United States Naval Academy (USNA) have been a cornerstone of its seamanship training program since 1939. Currently the fourth generation of these craft is under development and this paper summarizes research projects performed by eight midshipmen in the areas of parametric design criteria, structures, appendage development and analytical tool evaluation. While the results are oriented toward the new sail training craft, they are general enough to apply to any medium-sized offshore sailing vessel.
Fatigue Prediction Verification of Fiberglass Hulls
The growing use of marine composite materials has led to many technical challenges and one is predicting lifetime durability. This analysis step has a large uncertainty due to the lack of data from in-service composite vessels. Analytical models based on classical lamination theory, finite-element analysis, ship motions, probability and wind and wave mechanics were used in this project to predict hull laminate strains, and fatigue tests were used to determine S-N residual stiffness properties of coupons. These predictions and test data were compared against two cored fiberglass sisterships having significantly different fatigue histories and undamaged laminates representing a new vessel. Strains were measured while underway and good correlation was achieved between predictions and measurements. Fatigue damage indicators were identified which could be used in vessel inspection procedures. Endurance limits were found to be near 25% of static failure load, indicating that a fatigue design factor of four is required for infinite service with this material. Standard moisture experiments using boiling water were compared with long-term exposure. Results indicated the boiling water test yielded significantly conservative values and was not a reliable means of predicting long-term effects. Panel tests were compared with a combined coupon and finite-element procedure. Results indicated the proposed procedure was a viable substitute, at least for the materials studied. A rational explanation for using thicker outer skin laminates in marine composites was identified through single-sided moisture flex tests. These showed that the reduced strength and stiffness due to moisture of the outer hull skin laminate could be compensated by increased thickness. Although the resulting unbalanced laminate is not ideal from a warping standpoint, the approach leads to consistent tensile failure of the inner skin when subjected to normal loads. Permeability considerations make this desirable for hull laminates.